Примерный план-конспект первого урока. Полупроводниковые материалы закономерность композиции элементов машины

Объясняет особенности.

Полупроводники — вещества, способные, как проводить электрический ток, так и препятствовать его прохождению. Это большая группа веществ, применяемых в радиотехнике (германий, кремний, селен, а так же всевозможные сплавы и химические соединения н-р окись меди). Почти все вещества окружающего нас мира являются полупроводниками. Самым распространенным в природе полупроводником является кремний, составляющий по приблизительным подсчетам почти 30 % земной коры. Для изготовления полупроводниковых приборов используют в основном только кремний и германий. (найдите их в таблице Д. И. Менделеева — Приложение 2). Какую валентность они имеют (в таблице Д. И. Менделеева найдите номер столбца в котором они находятся)?

По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока. Запишите в тетрадь определение что такое полупроводник.

Рассмотрим следующие три опыта (демонстрация или плакаты)

Первый опыт: Нагревание полупроводника


Посмотрите, что происходит при увеличении температуры? Сопротивление будет уменьшаться при увеличении температуры?

Какой вывод можно сделать?

Электропроводность полупроводников сильно зависит от окружающей температуры. При очень низкой температуре, близкой к абсолютному нулю (-273), полупроводники не проводят электрический ток, а с повышением температуры, их сопротивляемость току уменьшается. На основе этого были созданы термоэлектрические приборы.

Термисторы. В полупроводниках электрическое сопротивление очень сильно зависит от температуры. Это свойство используют для измерения температуры по силе тока в цепи с полупроводником. Такие приборы называют термисторами или терморезисторами.

Термисторы — одни из самых простых полупроводниковых приборов. Выпускают термисторы в виде стержней, трубок, дисков, шайб и бусинок размером от нескольких микрометров до нескольких сантиметров.

Диапазон измеряемых температур большинства термисторов лежит в интервале от 170 до 570 К. Но существуют термисторы для измерения как очень высоких (примерно 1300 К), так и очень низких (примерно 4 — 80 К) температур. Термисторы применяются для дистанционного измерения температуры, противопожарной сигнализации и т. д.

Второй опыт: Освещение светом полупроводника



Посмотрите, что происходит при увеличении освещенности?

Какой вывод можно сделать?

Если на полупроводник навести свет, то его электропроводность начинает увеличиваться. Используя это свойство полупроводников были созданы фотоэлектрические приборы. Также полупроводники способны преобразовывать энергию света в электрический ток, например, солнечные батареи.

Фоторезисторы. Электрическая проводимость полупроводников овышается не только при нагревании, но и при освещении.

Можно заметить, что при освещении полупроводника сила тока в цепи заметно возрастает. Это указывает на увеличение проводимости (уменьшение сопротивления) полупроводников под действием света. Данный эффект не связан с нагреванием, так как может наблюдаться и при неизменной температуре.

Электрическая проводимость возрастает вследствие разрыва связей и образования свободных электронов и дырок за счет энергии света, падающего на полупроводник. Это явление называют фотоэлектрическим эффектом.

Приборы, в которых используют фотоэлектрический эффект в полупроводниках, называют фоторезисторами или фотосопротивлениями. Миниатюрность и высокая чувствительность фоторезисторов позволяют использовать их в самых различных областях науки и техники для регистрации и измерения слабых световых потоков. С помощью фоторезисторов определяют качество поверхностей, контролируют размеры изделий и т. д.

Третий опыт: Добавление примеси в полупроводник

Посмотрите, что происходит?

Какой вывод можно сделать?

При введении в полупроводник примесей определенных веществ их электропроводность резко увеличивается.

Запишем в тетрадь свойства полупроводников

Электропроводность повышается при повышении температуры (терморезистор)

Электропроводность повышается при освещении (фоторезистор, солнечные батареи)

Электропроводность повышается при введении в полупроводник некоторых примесей. (полупроволниковый диод)

Свойства полупроводников зависят от их внутреннего строения. Рассмотрим кремний — четырехвадентный элемент (показать трехмерную модель) т. е. во внешней оболочке атома имеются четыре электрона, слабо связанные с ядром. Число ближайших соседей каждого атома кремния также равно четырем.

Взаимодействие пары соседних атомов осуществляется с помощью парноэлектронной связи, называемой ковалентной связью. В образовании этой связи от каждого атома участвует по одному валентному электрону. Атомы расположены так близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг соседних атомов, тем самым связывая атомы в единое целое вещество.

Зарисуем получившуюся картинку в тетрадь.(рисунок на доске) Студенты выполняют такой же рисунок в тетради. Добавим больше соседних атомов.


При нагревании кремния кинетическая энергия частиц повышается, и наступает разрыв отдельных связей. Некоторые электроны становятся свободными и перемещаются между узлами решетки, образуя электрический ток. Проводимость полупроводников, обусловленную наличием у них свободных электронов, называют, электронной проводимостью. При разрыве связи образуется вакантное место с недостающим электроном — дырка.

При низких температурах связи не разрываются, поэтому кремний при низких температурах не проводит электрический ток.

Проводимость чистых полупроводников, без примесей (собственная проводимость) осуществляется перемещением свободных электронов (электронная проводимость) и перемещением связанных электронов на вакантные места парноэлектронных связей (дырочная проводимость). Проводимость полупроводников чрезвычайно сильно зависит от примесей. Именно эта зависимость сделала полупроводники тем, чем они стали в современной технике. Различают донорные и акцепторные примеси. При наличии донорной примеси в полупроводнике, если в кремний добавить мышьяк, наблюдается избыток электронов, полупроводник называется n -типа, при наличии акцепторных примесей, если в кремний добавить индий, наблюдается избыток дырок, полупроводник называется р-типа.

Урок физики 11 класс

Тема урока:

«Полупроводники.

Собственная и примесная проводимость полупроводников. Электрический ток в полупроводниках»

Цель урока

  • Сформировать у учащихся понятие о природе электрического тока в полупроводниках, о способах измерения их свойств под действием температуры, освещённости, примесей.
  • Способствовать расширению политехнического кругозора, мотивировать к изучению предмета, совершенствовать способность к восприятию и анализу технической, научной информации.
  • Развитие коммуникативных компетенций учащихся, их умения работать в коллективе.

Материалы и оборудование:

Компьютер, проектор, электронные материалы по теме: «Полупроводники»; карточки – задания для самостоятельной работы в малых группах; набор полупроводниковых приборов НПП – 2; демонстрационный гальванометр; источник постоянного тока (4В); демонстрационный выключатель; электрическая лампа 60-100Вт на подставке; электрический паяльник; соединительные провода.

План проведения урока:

  1. Повторение изученного и актуализация темы урока.
  2. Объяснение материала темы.
  3. Самостоятельная работа учащихся в группах.
  4. Подведение итогов, задание на дом.
  1. Повторение изученного и актуализация темы урока (6мин).

Надо вспомнить:

  1. Что такое электрический ток?
  2. Что принимают за направление тока?
  3. Движением каких частиц образован электрический ток в металлических проводниках?
  4. Почему в диэлектриках не может возникать электрический ток?
  5. Как вы думаете: существует ли в природе вещества, которые по способности проводить электрический ток занимают промежуточное положение?

Да это полупроводники. Ещё чуть более полувека назад они не имели заметного практического значения. В электротехнике и радиотехнике обходились исключительно проводниками и диэлектриками. Но положение резко изменилось, когда теоретически, а затем и практически была открыта возможность управлять электрической проводимостью полупроводников.

В чём же главное отличие полупроводников от проводников и какие особенности их строения позволили широко использовать полупроводниковые приборы практически во всех электронных устройствах, позволив значительно повысить их надёжность, многократно сократить габариты, да и создать новые, о которых приходилось только мечтать: создать сотовые телефоны, миниатюрные компьютеры и т.д.?

  1. Объяснение материалов темы (15мин)
  1. Определение полупроводников

Большой класс веществ, удельное сопротивление которых больше, чем у проводников, но меньше, чем у диэлектриков и с увеличением температуры очень резко уменьшается.

К ним относятся элементы таблицы Менделеева: германий, кремний, селен, теллур, индий, мышьяк, фосфор, бор, и т.д. некоторые соединения: сернистый свиней, сернистый кадмий, закись меди и т.д.

  1. Строение полупроводников.
  1. Атомная структура кристаллической решётки кремния (проекция на экране);
  2. Нарушение парноэлектронных связей под воздействием внешних факторов: повышение температуры, освещённости.

Демонстрации зависимости электропроводности полупроводников:

Rт 10к ФС – К1

  1. Электронная проводимость чистого полупроводника (проекция)
  2. Дырочная проводимость (проекция)

Есть необходимость подчеркнуть, что дырки не являются реальными частицами. В обоих видах проводимости полупроводников движутся только валентные электроны. Проводимость отличается друг от друга лишь механизмом движения электронов. Электронная проводимость обусловлена направлением движения свободных электронов, а дырочная вызвана движением связанных электронов, переходящих от атома к атому, поочерёдно замещая друг друга в связках, что эквивалентно движению дырок в противоположном направлении.

Таким образом, в полупроводниках два типа носителей – электроны и дырки, концентрации которых в чистых полупроводниках одинаковы – собственная проводимость, она невелика.

  1. Примесная проводимость (проекция)

Существенно зависит проводимость полупроводников от наличия в их кристаллах примесей:

  1. донорные примеси – пятивалентные элементы, легко отдающие электроны (As, P) обеспечивают количественное преимущество электронов над дырками, создающие проводимость n – типа;
  2. акцепторные примеси – трёхвалентные элементы (In, B), принимающие свободные электроны, образуя дырки. Создаётся проводимость p – типа.

Демонстрация примесей и проводимости n – типа и p – типа:

n – тип p – тип

Особый интерес представляет протекание тока не отдельно в полупроводниках n – типа или p – типа, а через контакт двух полупроводников с разными типами проводимости.

  1. Самостоятельная работа учащихся в группах (20мин)

Предлагается на добровольной основе сформировать группы из 4 учеников (это надо сделать до начала урока, чтобы избежать хаотичных перемещений по кабинету и потере времени).

Каждой группе выдаётся задание, которое надлежит выполнить. Оно содержит вопросы, качественные задачи разного уровня, рассчитанные как на письменные, так и устные ответы.

  1. Подведение итогов

Заслушиваем ответы представителей групп на основные вопросы данной темы, исправляем возможные ошибки. Собираем письменные отчёты. Оценки за работу выставляем после изучения второй части темы и выполнения заданий на повторение с учётом КТУ каждого учащегося в группе.

Задание на дом: § 113; §114 учебника.


Полупроводники

Полупроводники – большой класс веществ, удельное сопротивление которых изменяется в широких пределах от 10 -5 до 10 10 Ом∙м .

Полупроводники обладают промежуточными свойствами между металлами и диэлектриками. Характерным для полупроводников является не величина удельного сопротивления, а то, что она под воздействием внешних условий изменяется в широких пределах.

К полупроводникам относятся :

а) элементы III, IV, V и VI групп периодической системы элементов, например Si , Ge , As , Se , Te ;

б) сплавы некоторых металлов;

в) оксиды (окислы металлов);

г) сульфиды (сернистые соединения);

д) селениды (соединения с селеном).

Сопротивление полупроводников зависит от:

а) температуры;

б) освещённости;

в) наличия примесей.

Электрическое сопротивление полупроводников уменьшается и при освещении их светом.

1. Собственная проводимость полупроводников.

Собственная проводимость – электрическая проводимость химически чистого полупроводника.

В типичном полупроводнике (кристалле кремния Si ) атомы объединены ковалентной (атомной) связью . При комнатной температуре средняя энергия теплового движения атомов в кристалле полупроводника составляет 0,04 эВ . Это значительно меньше энергии, необходимой для отрыва валентного электрона, например, от атома кремния (1,1 эВ ). Однако вследствие неравномерности распределения энергии теплового движения или при внешних воздействиях некоторые атомы кремния ионизируются. Образуются свободные электроны и вакантные места в ковалентной связи – так называемые дырки . Под воздействием внешнего электрического поля возникает упорядоченное движение свободных электронов и упорядоченное движение в противоположном направлении такого же количества дырок.

Электронная проводимость или проводимость n -типа (от лат. negative – отрицательный) – проводимость полупроводников, обусловленная электронами.

Дырочная проводимость или проводимость p -типа (от лат. positive – положительный) – проводимость полупроводников, обусловленная дырками.

Таким образом, собственная проводимость полупроводника обусловлена одновременно двумя типами проводимости – электронной и дырочной .

2. Примесная проводимость полупроводников.

Примесная проводимость – электрическая проводимость полупроводников, обусловленная наличием примесей (примеси – атомы посторонних элементов).

Наличие в полупроводнике примеси существенно изменяет его проводимость. Например, при введении в кремний примерно 0,001 ат.% бора его проводимость увеличивается примерно в 10 6 раз.

В основном, атомы примеси имеют валентность, отличающуюся на единицу от валентности основных атомов.

Донорные примеси – примеси с большей валентностью, сообщающие полупроводнику электронную проводимость .

Полупроводник (кремний) + донор (мышьяк) = полупроводник n -типа.

Акцепторные примеси – примеси с меньшей валентностью, сообщающие полупроводнику дырочную проводимость .

Полупроводник (кремний) + акцептор (индий) = полупроводник р -типа.

3. Полупроводниковые диоды и триоды. Их применение.

Принцип действия большинства полупроводниковых приборов основан на использовании свойств p - n -перехода.

Электронно-дырочный переход (или p - n –переход ) – граница соприкосновения двух полупроводников с различными типами проводимости.

Через границу раздела происходит диффузия электронов и дырок, которые встречаясь рекомбинируют.

На границе раздела в электронном полупроводнике остаются положительные ионы донорной примеси, а в дырочном образуются отрицательные ионы акцепторов. Образуется так называемый запирающий слой (двойной электрический слой), напряжённость которого Е зап направлена от электронного полупроводника к дырочному. Через этот двойной слой могут прорваться из n -полупроводника в p -полупроводник только такие электроны, которые обладают для этого достаточно большими энергиями. Внешнее электрическое поле, приложенное к двум разнородным полупроводникам, в зависимости от своего направления может и ослаблять поле запирающего слоя.

Запирающий слой обладает односторонней проводимостью : запирающий слой пропускает ток в направлении, противоположном полю запирающего слоя, и не пропускает ток в направлении, совпадающем с полем запирающего слоя.

Полупроводниковый диод – прибор с одним p - n -переходом.

Вольт-амперная характеристика – зависимость силы тока I от напряжения U , приложенного к диоду.

Полупроводниковый триод (или транзистор) – прибор с двумя p - n -переходами.

Транзисторы (как и ламповые триоды) служат для усиления слабых электрических сигналов.

Контрольные вопросы

1. Какие вещества называются полупроводниками?

2. Чем отличаются полупроводники от проводников и диэлектриков?

3. От чего зависит электропроводность полупроводников?

4. Какие свойства полупроводников используются в термо- и фоторезисторах?

5. Каков механизм собственной проводимости полупроводников?

6. Как образуются свободные электроны и дырки?

7. Каков механизм примесной проводимости полупроводников?

8. Какие примеси называются донорными, а какие – акцепторными?

9. Как объяснить одностороннюю проводимость p - n -перехода?

10. Какова вольт-амперная характеристика p - n -перехода? Объясните возникновение прямого и обратного тока.

11. Какое направление в полупроводниковом диоде является пропускным для тока?

12. Что такое полупроводниковый триод (или транзистор)?

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство науки и образования

Кафедра "ИиВТ"

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К курсовой работе

Организация и методика производственного обучения по предмету: Материаловедение и электрорадиоматериалы

На тему: Полупроводниковые материалы

Введение

I. В современной технике очень широко применяются металлы и сплавы, а также электротехнические материалы. Современное радиоэлектронное приборостроение достигло такого этапа развития когда важными параметрами приборов зависят не столько от схемных решений, сколько от использованных электрорадиоматериалов и совершенство технологических процессов их изготовления. Предмет материаловедение состоит из пяти разделов. Первый раздел называется общие сведения о металлах и сплавах.

Метал - это твердое вещество.

Сплав - это соединение 2-х и более химических элементов

Компонент - это вещества составляющие сплав.

II. Проводниковые материалы - это материалы которые обладают малым удельным сопротивлением.

III. Диэлектрические материалы

Диэлектрики - это изоляционные материалы.

IV. Полупроводниковые материалы - это материалы которые при работе затрачивают малое количество энергий.

V. Магнитные материалы - обладающие свойствами притягивания.

Конструкционные стали и сплавы

Конструкционными называются стали, предназначенные для изготовления деталей машин (машиностроительные стали), конструкций и сооружений (строительные стали).

Углеродистые конструкционные стали

Углеродистые конструкционные стали подразделяются на стали обыкновенного качества и качественные.

Стали обыкновенного качества изготавливают следующих марок Ст0, Ст1, Ст2,..., Ст6 (с увеличением номера возрастает содержание углерода). Ст4 - углерода 0.18-0.27%, марганца 0.4-0.7%.

С повышением условного номера марки стали возрастает предел прочности (в) и текучести (0.2) и снижается пластичность (,). Ст3сп имеет в =380490МПа, 0.2 =210250МПа, =2522%.

Качественные углеродистые стали выплавляют с соблюдением более строгих условий в отношении состава шихты и ведения плавки и разливки. Содержание S<=0.04%, P<=0.0350.04%, а также меньшее содержание неметаллических включений.

Качественные углеродистые стали маркируют цифрами 08, 10, 15,..., 85, которые указывают среднее содержание углерода в сотых долях процента.

Низкоуглеродистые стали (С<0.25%) 05кп, 08, 07кп, 10, 10кп обладают высокой прочностью и высокой пластичностью. в =330340МПа, 0.2 =230280МПа, =3331%.

Среднеуглеродистые стали (0.3-0.5% С) 30, 35,..., 55 применяют после нормализации, улучшения и поверхностной закалки для самых разнообразных деталей во всех отраслях промышленности. Эти стали по сравнению с низкоуглеродистыми имеют более высокую прочность при более низкой пластичности (в =500600МПа, 0.2 =300360МПа, =2116%). В связи с этим их следует применять для изготовления небольших деталей или более крупных, но не требующих сквозной прокаливаемости.

Стали с высоким содержанием углерода (0.6-0.85% С) 60, 65,..., 85 обладают высокой прочностью, износостойкостью и упругими свойствами. Из этих сталей изготавливают пружины и рессоры, шпиндели, замковые шайбы, прокатные валки и т.д.

Легированные конструкционные стали

Стали, в которых суммарное количество содержание легирующих элементов не превышает 2.5%, относятся к низколегированным, содержащие 2.5-10% - к легированным, и более 10% к высоколегированным (содержание железа более 45%).

Наиболее широкое применение в строительстве получили низколегированные стали, а в машиностроении - легированные стали.

Легированные конструкционные стали маркируют цифрами и буквами. Двухзначные цифры, приводимые в начале марки, указывают среднее содержание углерода в сотых долях процента, буквы справа от цифры обозначают легирующий элемент.

Строительные низколегированные стали

Низко легированными называют стали, содержащие не более 0.22% С и сравнительно небольшое количество недефицитных легирующих элементов: до 1.8% Mn, до 1,2% Si, до 0,8% Cr и другие.

К этим сталям относятся стали 09Г2, 09ГС, 17ГС, 10Г2С1, 14Г2, 15ХСНД, 10ХНДП и многие другие. Стали в виде листов, сортового фасонного проката применяют в строительстве и машиностроении для сварных конструкций, в основном без дополнительной термической обработки. Низколегированные низкоуглеродистые стали хорошо свариваются.

Для изготовления труб большого диаметра применяют сталь 17ГС (0.2 =360МПа, в =520МПа).

Арматурные стали

Для армирования железобетонных конструкций применяют углеродистую или низкоуглеродистую сталь в виде гладких или периодического профиля стержней.

Сталь Ст5сп2 - в =50МПа, 0.2 =300МПа, =19%.

Стали для холодной штамповки

Для обеспечения высокой штампуемости отношение в / 0.2 стали должно быть 0.5-0.65 при не менее 40%. Штампуемость стали тем хуже, чем больше в ней углерода. Кремний, повышая предел текучести, снижает штампуемость, особенно способность стали к вытяжке. Поэтому для холодной штамповки более широко используют холоднокатаные кипящие стали 08кп, 08Фкп (0.02-0.04% V) и 08Ю (0.02-0.07% Al).

Конструкционные (машиностроительные) цементируемые (нитроцементуемые) легированные стали

Для изготовления деталей, упрочняемых цементацией, применяют низкоуглеродистые (0.15-0.25% С) стали. Содержание легирующих элементов в сталях не должно быть слишком высоким, но должно обеспечить требуемую прокаливаемость поверхностного слоя и сердцевины.

Хромистые стали 15Х, 20Х предназначены для изготовления небольших изделий простой формы, цементируемых на глубину 1.0-1.5мм. Хромистые стали по сравнению с углеродистыми обладают более высокими прочностными свойствами при некоторой меньшей пластичности в сердцевине и лучшей прочности в цементируемом слое., чувствительна к перегреву, прокаливаемость невелика.

Сталь 20Х - в =800МПа, 0.2 =650МПа, =11%, =40%.

Хромованадиевые стали . Легирование хромистой стали ванадием (0.1-0.2%) улучшает механические свойства (сталь 20ХФ). Кроме того, хромованадиевые стали менее склонны к перегреву. Используют только для изготовления сравнительно небольших деталей.

Типовой учебный план

Типовой учебный план - это документ, предназначенный для реализации государственных требований к минимуму содержания и уровня подготовки выпускных учебных заведений средне специального образования. Он определяет общий перечень дисциплин, и обязательные объемы времени для их реализации, виды и минимальную продолжительность произведенной практики, примерный перечень учебных кабинетов, лабораторий и мастерских. В учебном плане также предусматривается курсовое проектирование не более чем по трем дисциплинам во весь период обучения. Виды производственной практики и их продолжительность определяется в соответствии с типовой учебной практики по заданной специальности. График учебного процесса носит рекомендательный характер и может быть откорректирован учебным заведением при обязательном соблюдении продолжительности теоретического обучения, экзаменационных сессий, а также сроков проведения зимних и завершающих учебный год летних каникул (см. таблицу 1).

ТАБЛИЦА 1

Наименование

учебного процесса,

учебных дисциплин

Распреде-ление по семестрам

Кол-во контроль-ных

Количество часов

Распределение по курсам и семестрам

Экзаменов

Курсо-вых проект

Тео-рет. зан.

Лаб.прак занятия

Материаловедение

и электрорадио-материалы

Из учебного плана видно, что на предмет "Материаловедение и электрорадиоматериалы" всего отводится 60 часов. Из них 44 - теоретических и 16- практических. Минимальное количество контрольных работ составляет 2 работы. Есть лабораторные занятия. Курсовых, курсового проекта, зачета нет. Предмет "Материаловедение и электрорадиоматериалы" изучается на 2 курсе. В 3семестре обучения 18 недель, в неделю по 2 часа: 18*2=36 часов изучают в 3 семестре. В 4 семестре обучения 12 недель, в неделю по 2 часа: 12*2=24 часа изучают за 4 семестр. Итого за 3 и 4 семестр: 36+24=60 часов, полностью изучают этот предмет на 2 курсе.

Тематический план

Тематический план - является частью учебной программы. Учебная программа - это документ, в котором дается характеристика содержания изучаемого материала по годам обучения и разделам (темам). Тематический план состоит из разделов, в которые входят темы. Тематический план распределяет часы по разделам из общего количества часов. В тематическом плане по предмету "Материаловедение и электрорадиоматериалы" в разделе "Проводниковые материалы" отводится 12 часов.

ТАБЛИЦА 2

Наименование темы

Количество часов

Теоретические занятия

Глава 4. Проводниковые материалы

Материалы высокой проводимости

Сверхпроводники и криопроводники

Электропроводность проводников

Контрольная работа

Календарно-тематический план

Календарно-тематический план - планирующее учетный документ, его целями является определение тематики, тип метода и оснащение уроков по выбранному предмету. Составление календарно-тематического плана является первым шагом создания поурочной систематизации. Исходным документом здесь является учебная программа. Календарно тематический план предусматривает межпредметные связи. При соответствии календарно-тематического плана учебной программе ориентируются на тематический план при составлении поурочного плана. Календарно-тематический план (см. таблицу 3).

Разработка урока

Изучая учебную программу, преподаватель внимательно анализирует каждую тему, что дает возможность четко определить содержание обучения, установить межпредметные связи. На основе учебной программы составляется календарно-тематический план и уже на основе календарно-тематического плана составляется поурочный план. При определении цели и содержания урока, вытекающей из учебной программы, определяется содержание записи, умений и навыков, которые учащиеся должны усвоить на данном уроке. Анализируя предыдущие уроки, и устанавливая в какой мере решены их задачи, выясняют причину недочетов, и на основе этого определяют какие изменения необходимо внести в проведения данного урока. Намечают структуру урока и время на каждую ее часть, формируют содержание и характер воспитательной работы во время урока.

План урока

Предмет: Материаловедение и электрорадиоматериалы Группа 636

Тема: Классификация и основные свойства

а) обучающая: Познакомить учащихся с понятиями и основными свойствами проводниковых материалов, рассказать о их предназначений

б) развивающая: Развить интерес к материаловедению и электрорадиоматериалам

в) воспитательная: Выработать потребность в самообразовании

Тип урока: Комбинированный

Метод изложения: поисковый

Наглядные пособия: плакат № 1, ПК

Время: 90 мин.

Ход урока

I . Вводная часть:

Письменный опрос по двум вариантам + 3 уч-ся у доски (приложение1)

II . Основная часть:

1. Сообщение цели новой темы

2. Изложение нового материала время 40 мин.

а) Основные понятия

б) Классификация проводников

в) Сфера применения

3. Ответы на вопросы учащихся время 10 мин.

4. Закрепление нового материала время 20 мин.

Письменный опрос по 2 вариантам + 3 уч-ся у доски (приложение 2)

III . Заключительная часть: время 3 мин.

1. Подведение итогов

2. Задание на дом: стр. 440 ответы на вопросы, самостоятельно рассмотреть темы № 2, 3, 4, 5

3. Заключительное слово преподавателя

Преподаватель

Список литературы

1. Лахтин Ю. М., Леонтьева В. П. Материаловедение. -- М.: Машиностроение, 1990 г.

2. Технологические процессы машиностроительного производства. Под редакцией С. И. Богодухова, В. А Бондаренко. -- Оренбург: ОГУ, 1996 г.

Приложение 1

ПИСЬМЕННЫЙ ОПРОС по 2-м вариантам

Вариант 1

1 . Что изучает предмет материаловедение.

2. Виды металлов.

3. Классификация металлов

4. Аллотропическое превращение

5 . Свойства металлов

Вариант 2

1. Определение твердости металлов

2. Механические свойства

3. Пластичность

4. Выносливость

5. Технологические свойства

Приложение 2

Письменный опрос

1 - вариант

1. Полупроводниковые материалы

2. Сверхпроводники

3. Криопроводники

4. Характеристики полупроводниковых материалов

5. Упругость материалов

2 - вариант

1. Полупроводниковые материалы.

2. Диэлектрические материалы

3. Пластичность

4. Упругость

5. Сверхпроводники

Приложение 3

Конспект урока на тему " Проводниковые материалы "

Возрастание роли техники и технического знания в жизни общества характеризуется зависимостью науки от научно-технических разработок, усиливающейся технической оснащенностью, созданием новых методов и подходов, основанных на техническом способе решения проблем в разных областях знания, в том числе и военно-техническом знании. Современное понимание технического знания и технической деятельности связывается с традиционным кругом проблем и с новыми направлениями в технике и инженерии, в частности с техникой сложных вычислительных систем, проблемами искусственного интеллекта, системотехникой и др.

Спецификация понятий технического знания обуславливается в первую очередь спецификой предмета отражения технических объектов и технологических процессов. Сравнение объектов технического знания с объектами иного знания показывает их определенную общность, распространяющуюся, в частности, на такие черты, как наличие структурности, системности, организованности и т.д. Такие общие черты отражаются общенаучными понятиями "свойство", "структура", "система", "организация" и т.п. Разумеется, общие черты объектов технического, военно-технического, естественнонаучного и общественно-научного знания отражаются такими философскими категориями "материя", "движение", "причина", "следствие" и др. Общенаучные и философские понятия употребляются и военных и в технических науках, но не выражают их специфики. Вместе с тем они помогают глубже, полнее осмыслить содержание объектов технического, военно-технического знания и отражающих их понятий технических наук.

Вообще философские и общенаучные понятия в технических науках выступают в роли мировоззренческих и методологических средств анализа и интеграции научно-технического знания.

Технический объект - это, несомненно, часть объективной реальности, но часть особая. Его возникновение и существование связаны с социальной формой движения материи, историей человека. Это определяет исторический характер технического объекта. В нем объективируются производственные функции общества, он выступает воплощением знаний людей.

Возникновение техники - это естественноисторический процесс, результат производственной деятельности человека.

Ее исходным моментом являются "органы человека". Усиление, дополнение и замещение рабочих органов - социальная необходимость, реализуемая путем использования природы и воплощения в преобразуемых природных телах трудовых функций.

Формирование техники протекает в процессе изготовления орудий, приспособления природных тел для достижения цели. И ручное рубило, и ствол дерева, выполняющий функцию моста и т.п. - все это средства усиления индивида, повышения эффективности его деятельности. Природный предмет, выполняющий техническую функцию, - это уже в потенции технический объект. В нем зафиксирована целесообразность его устройства и полезность конструктивных улучшений за счет подработки его частей.

Практическое выделение конструкции как целостности свидетельствует об актуальном существовании технического объекта. Ее важнейшими свойствами являются функциональная полезность, необычное для природы сочетание материалов, подчиненность свойств материала отношению между компонентами системы. Техническая конструкция представляет собой соединение компонентов; этот порядок обеспечивает как можно более продолжительное и эффективное функционирование орудия, исключающее его саморазрушение. Компонентом конструкции выступает деталь как исходная и неделимая для нее единица. И, наконец, с помощью технической конструкции способ общественной деятельности достигает технологичности. Технология - это та сторона общественной практики, которая представлена взаимодействием технического средства и преобразуемого объекта, определяется законами материального мира и регулируется техникой.

Техническая практика обнаруживает себя в отношении человека к технике как объекту, к ее частям и их связям.

Эксплуатация, изготовление и конструирование тесно связаны друг с другом и представляют собой своеобразное развитие технической практики. В качестве объекта эксплуатации техника выступает как некоторая материальная и функциональная целостность, сохранение и регулирование которой - непременное условие ее использования. Движущим противоречием эксплуатации является несоответствие между условиями функционирования техники и ее функциональными особенностями. Функциональные особенности предполагают постоянство условий эксплуатации, а условия эксплуатации имеют тенденцию меняться.

Преодоление этого противоречия достигается в технологии, в нахождении типовых технологических операций.

Внутренним противоречием технологии является несоответствие между используемыми природными процессами и потребностями в повышении ее надежности и эффективности. Преодоление этого противоречия достигается в конструировании более совершенной техники, с помощью которой можно использовать более фундаментальные закономерности природы. Техника не пассивна по отношению к технологии, средство влияет на цель.

Новая техника изменяет технологию, технология сама становится средством реализации внутренних достоинств сконструированной техники.

В конструировании с наибольшей полнотой обнаруживается социальная сущность технического объекта. В нем синтезируется конструктивная структура в соответствии с заданной обществом производственной функцией. Техника образует условие развития общества, опосредствует его отношение к природе, является средством разрешения противоречий между человеком и природой. Технический объект - носитель производственных, технологических функций человека. Без технического прогресса невозможно достижение социальной однородности общества и всестороннего развития каждого индивида.

Свойства технического объекта выявляются в технической практике ификсируются в знании приемов эксплуатации, изготовления и совершенствования техники. Эмпирически найденные пропорции между частями технического средства и к формированию "технических предметов", относительно устойчивых сведений о технических устройствах, об их существенных компонентах и свойствах. В виде таких предметов сформировались, например, описания подъемнотранспортных механизмов, часов, важнейших ремесел и материалов.

Переход к машинной технике, передача рабочих орудий механизмам вызвали в жизни конструирование технических устройств, что потребовало теоретической разработки понятия "машина" и получения различных ее идеализаций (кинематической пары, динамики сил, конструкции) .

На формирование понятий технической науки оказывают влияние закономерности, раскрытые в ходе изучения естественных наук, в частности, теоретической механики. Вместе с тем следует признать, что понятие технической конструкции получает свое выражение внутри технического знания. Исторически оно формируется как система положений о машине, механической совокупности частей и их закономерном отношении, обеспечивающем получение нужного эффекта.

Формирование технических дисциплин происходило различными путями. Технические дисциплины о двигателях основываются на результатах естествознания, на знании законов природы и применении законов физики к технике. Прикладной характер носят техническая кинематика, динамика машин и учение о деталях машин. Эти дисциплины сформировались на базе теоретической механики и начертательной геометрии, что выразилось в создании специального языка.

Технические науки формировались не только путем приложения естествознания к технике, но и путем использования многовекового опыта техники, его осмысления и придания ему логически четкого вида. Таким путем формировались науки о различных типах машин, материаловедение и пр. Проверенные на практике эмпирические данные этих технических дисциплин сохранялись и включались в общую науку о машинах. И до сих пор многие приемы изготовления и эксплуатации техники не получили должного теоретического обоснования.

Формирование технической науки положило конец ремесленному отношению к технике, когда те или иные механизмы совершенствовались по частям в течение многих десятилетий и даже столетий. Понимание того, что машина представляет собой преобразование движения в форму, нужную производству и в своей сущности состоящую из кинематических пар, легло в основу научного конструирования разнообразных технических устройств в XIX в.

Из сказанного видно, что техническая наука исследует свой объект, хотя она способна объяснить функционирование и ремесленных, ручных орудий труда, которые создавались без научного обоснования. Объект технической науки формируется в процессе выделения существенных и необходимых свойств техники, конструирования машины. Машина, ее компоненты, отношения между ними, их композиция, природная основа компонентов и технологический процесс - все это объект технической науки. Объект технической науки является источником научно-технического познания. Его исследование дает, в частности, конструктивные структуры и их элементы. В с структуре фиксируется устойчивость, повторяемость, необходимость,

закономерность композиции элементов машины. По отношению к структуре компонент машины выступает в виде элемента. Мысленное получение элемента структуры связано отвлечением от физической размерности и природной основы компонента. В конечном счете все научно-технические понятия являются отображением технического объекта.

Понятия "технический объект" и "объект технической науки" выполняют различную методологическую функцию в философском анализе техники и научно-технического познания. В понятии "технический объект" фиксируется реально изменяемая в практике сторона объективного мира. Технический объект отображается в философских, общественных, естественных и технических науках, и каждый раз наука вычленяет свойственную ей предметную область. В понятии "объект технической науки" фиксируется предмет технических наук, их отношение к объективной реальности. Главным объектом технических наук является машина, так как с ее помощью организуется технологический процесс и ею он регулируется. Машина облегчает и заменяет труд человека, служит средством достижения цели.

В технической науке прежде всего выделяются исследования элементов, их отношений и технических структур. Для формирования предмета технической науки важно выделить, описать и объяснить технические элементы, их отношения и возможные структуры, в которых материализуются полезные для общества производственные функции. Но на этом техническая наука не кончается. Она включает в себя правила синтеза новых технических структур, расчетные методы и формы проектирования.

Правила и нормы проектирования, графические и аналитические методы расчета сближают техническую науку с техническим творчеством, проектно-конструкторскими работами. Предмет технических наук формируется в непосредственной зависимости от творчества техники. В этом - специфика технических наук, которые представляют собой средство совершенствования техники, переосмысления естественнонаучных данных, открытия технологических методов и изобретения технических конструкций.

В качестве важнейшего фактора технического творчества выступают правила, предусматривающие достижение прочности и надежности технического средства, износостойкости и теплостойкости его деталей и пр. Эти правила образуют рамки конструирования, исключая из него то, что не соответствует выработанным технической наукой критериям функционирования машин. На базе правил и норм инженерной деятельности разрабатываются методы решения задач.

Принципы выступают как предпосылки деятельности, как ее организующее и направляющее начало. Таким образом, в предмет технических наук входят не только закономерности технического объекта, но и закономерности технического проектирования, методы, правила, нормы и принципы проектирования техники.

Методика проведения урока.

Захожу в кабинет №24, здороваюсь с учащимися.

Начинается вводная часть урока.

I . Вводная часть:

1. Организационный момент: проверка по рапортичке время 2 мин.

Проверяю наличие учащихся по рапортичке. На проверку наличия учащихся на уроке отвожу 2 минуты. Затем делаю опрос домашнего задания.

2. Проверка домашнего задания: время 15 мин.

Опрос

Опрос провожу в виде вопросов 10 вопросов. В них входят вопросы по пройденной теме. На тест отвожу 15 минут.

ТЕСТ

1 . Что изучает предмет материаловедение

2. Проводниковые материалы

3. Полупроводниковые материалы

4. Диэлектрические материалы

5. Лаки

6. Компаунды

7. Клей

8. Прочность

9. Упругость

10. Пластичность

Конструкционные стали и сплавы

Конструкционными называются стали, предназначенные для изготовления деталей машин (машиностроительные стали) , конструкций и сооружений (строительные стали) .

Углеродистые конструкционные стали Углеродистые конструкционные стали подразделяются на стали обыкновенного качества и качественные.

Стали обыкновенного качества изготавливают следующих марок Ст0, Ст1, Ст2,..., Ст6 (с увеличением номера возрастает содержание углерода) . Ст4 -- углерода 0.18-0.27%, марганца 0.4-0.7%.

Стали обыкновенного качества, особенно кипящие, наиболее дешевые. Стали отливают в крупные слитки, вследствие чего в них развита ликвация и они содержат сравнительно большое количество неметаллических включений.

С повышением условного номера марки стали возрастает предел прочности (sв) и текучести (s0.2) и снижается пластичность (d, y) . Ст3сп имеет sв=380490МПа, s0.2=210250МПа, d=2522%.

Из сталей обыкновенного качества изготовляют горячекатаный рядовой прокат: балки, швеллеры, уголки, прутки, а также листы, трубы и поковки. Стали в состоянии поставки широко применяют в строительстве для сварных, клепанных и болтовых конструкций.

С повышением содержания в стали углерода свариваемость ухудшается. Поэтому стали Ст5 и Ст6 с более высоким содержанием углерода применяют для элементов строительных конструкций, не подвергаемых сварке.

Качественные углеродистые стали выплавляют с соблюдением более строгих условий в отношении состава шихты и ведения плавки и разливки. Содержание S<=0.04%, P<=0.0350.04%, а также меньшее содержание неметаллических включений.

Качественные углеродистые стали маркируют цифрами 08,10,15,..., 85, которые указывают среднее содержание углерода в сотых долях процента.

Низкоуглеродистые стали (С<0.25%) 05кп, 08,07кп, 10,10кп обладают высокой прочностью и высокой пластичностью. sв=330340МПа, s0.2=230280МПа, d=3331%.

Стали без термической обработки используют для малонагруженных деталей, ответственных сварных конструкций, а также для деталей машин, упрочняемых цементацией.

Среднеуглеродистые стали (0.3-0.5% С) 30,35,..., 55 применяют после нормализации, улучшения и поверхностной закалки для самых разнообразных деталей во всех отраслях промышленности. Эти стали по сравнению с низкоуглеродистыми имеют более высокую прочность при более низкой пластичности (sв=500600МПа, s0.2=300360МПа, d =2116%) . В связи с этим их следует применять для изготовления небольших деталей или более крупных, но не требующих сквозной прокаливаемости.

Стали с высоким содержанием углерода (0.6-0.85% С) 60,65,..., 85 обладают высокой прочностью, износостойкостью и упругими свойствами. Из этих сталей изготавливают пружины и рессоры, шпиндели, замковые шайбы, прокатные валки и т.д.

Легированные конструкционные стали

Легированные стали широко применяют в тракторном и сельскохозяйственном машиностроении, в автомобильной промышленности, тяжелом и транспортном машиностроении в меньшей степени в станкостроении, инструментальной и других видах промышленности. Это стали применяют для тяжело нагруженных металлоконструкций.

Стали, в которых суммарное количество содержание легирующих элементов не превышает 2.5%, относятся к низколегированным, содержащие 2.5-10% -- к легированным, и более 10% к высоколегированным (содержание железа более 45%) .

Наиболее широкое применение в строительстве получили низколегированные стали, а в машиностроении -- легированные стали.

Легированные конструкционные стали маркируют цифрами и буквами. Двухзначные цифры, приводимые в начале марки, указывают среднее содержание углерода в сотых долях процента, буквы справа от цифры обозначают легирующий элемент. Пример, сталь 12Х2Н4А содержит 0.12% С, 2% Cr, 4% Ni и относится к высококачественным, на что указывает в конце марки буква ²А².

Конструкционные (машиностроительные) улучшаемые легированные стали Стали имеют высокий предел текучести, малую чувствительность к концентраторам напряжений, в изделиях, работающих при многократном приложении нагрузок, высокий предел выносливости и достаточный запас вязкости. Кроме того, улучшаемые стали обладают хорошей прокаливаемостью и малой чувствительностью к отпускной хрупкости.

При полной прокаливаемости сталь имеет лучшие механические свойства, особенно сопротивление хрупкому разрушению -- низкий порог хладноломкости, высокое значение работы развития трещины КСТ и вязкость разрушения К1с.

Хромистые стали 30Х, 38Х, 40Х и 50Х применяют для средненагруженных деталей небольших размеров. С увеличением содержания углерода возрастает прочность, но снижаются пластичность и вязкость. Прокаливаемость хромистых сталей невелика.

Сталь 30Х -- sв=900МПа, s0.2=700МПа, d=12%, y=45%.

Хромомарганцевые стали. Совместное легирование хромом (0.9-1.2%) и марганцем (0.9-1.2%) позволяет получить стали с достаточно высокой прочностью и прокаливаемостью (40ХГ) . Однако хромомарганцевые стали имеют пониженную вязкость, повышенный порог хладноломкости (от 20 до -60°С) , склонность к отпускной хрупкости и росту зерна аустенита при нагреве.

Сталь 40ХГТР -- sв=1000МПа, s0.2=800МПа, d=11%, y=45%.

Хромокремнемарганцевые стали. Высоким комплексом свойств обладают хромокремнемарганцевые стали (хромансил) . Стали 20ХГС, 25ХГС и 30ХГС обладают высокой прочностью и хорошей свариваемостью. Стали хромансил применяют также в виде листов и труб для ответственных сварных конструкций (самолетостроение) . Стали хромансил склонны к обратимой отпускной хрупкости и обезуглероживанию при нагреве.

Сталь 30ХГС -- sв=1100МПа, s0.2=850МПа, d=10%, y=45%. Хромоникелевые стали обладают высокой прокаливаемостью, хорошей прочностью и вязкостью. Они применяются для изготовления крупных изделий сложной конфигурации, работающих при динамических и вибрационных нагрузках.

Сталь 40ХН -- sв=1000МПа, s0.2=800МПа, d=11%, y=45%.

Хромоникелемолибденовые стали. Хромоникелевые стали обладают склонностью к обратимой отпускной хрупкостью, для устранения которой многие детали небольших размеров из этих сталей охлаждают после высокого отпуска в масле, а более крупные детали в воде для устранения этого дефекта стали дополнительно легируют молибденом (40ХН2МА) или вольфрамом.

Сталь 40ХН2МА -- sв=1100МПа, s0.2=950МПа, d=12%, y=50%.

Хромоникелемолибденованадиевые стали обладают высокой прочностью, пластичностью и вязкостью и низким порогом хладноломкости. Этому способствует высокое содержание никеля. Недостатками сталей являются трудность их обработки резанием и большая склонность к образованию флокенов. Стали применяют для изготовления наиболее ответственных деталей турбин и компрессорных машин.

Сталь 38ХН3МФА -- sв=1200МПа, s0.2=1100МПа, d=12%, y=50%.

Рессорно-пружинные стали общего назначения

Рессорно-пружинные стали предназначены для изготовления пружин, упругих элементов и рессор различного назначения. Они должны обладать высоким сопротивлением малым пластическим деформациям, пределом выносливости и релаксационной стойкостью при достаточной пластичности и вязкости.

Для пружин малого сечения применяют углеродистые стали 65,70,75,85. Сталь 85 -- s0.2=1100МПа, sв=1150МПа, d=8%, y=30%.

Более часто для изготовления пружин и рессор используют легированные стали.

Стали 60С2ХФА и 65С2ВА, имеющие высокую прокаливаемость, хорошую прочность и релаксационную стойкость применяют для изготовления крупных высоконагруженных пружин и рессор. Сталь 65С2ВА -- s0.2=1700МПа, sв=1900МПа, d=5%, y=20%. Когда упругие элементы работают в условиях сильных динамических нагрузок, применяют сталь с никелем 60С2Н2А.

Для изготовления автомобильных рессор широко применяют сталь 50ХГА, которая по техническим свойствам превосходит кремнистые стали. Для клапанных пружин рекомендуется сталь 50ХФА, не склонная к перегреву и обезуглероживанию.

Шарикоподшипниковые стали

Для изготовления тел качения и подшипниковых колец небольших сечений обычно используют высокоуглеродистую хромистую сталь ШХ15 (0.95-1.0% С и 1.3-1.65% Cr) , а больших сечений -- хромомарганцевую сталь ШХ15СГ (0.95-1.05% С, 0.9-1.2% Cr, 0.4-0.65% Si и 1.3-1.65% Mn) , прокаливающуюся на большую глубину. Стали обладают высокой твердостью, износостойкостью и сопротивлением контактной усталости. К сталям предъявляются высокие требования по содержанию неметаллических включений, так как они вызывают преждевременное усталостное разрушение. Недопустима также карбидная неоднородность.

Для изготовления деталей подшипников качения, работающих при высоких динамических нагрузках, применяют цементуемые стали 20Х2Н4А и 18ХГТ. После газовой цементации, высокого отпуска, закалки и отпуска детали подшипника из стали 20Х2Н4А имеют на поверхности 58-62 HRC и в сердцевине 35-45 HRC.

Износостойкие стали

Для деталей, работающих на износ в условиях абразивного трения и высоких давлений и ударов, применяют высокомарганцевую литую аустенитную сталь 110Г13Л, содержащую 0.9-1.3% С и 11,5-14.5% Mn. Она обладает следующими механическими свойствами: s0.2=250350МПа, sв=8001000МПа, d=3545%, y=4050%.

Сталь 110Г13Л обладает высокой износостойкостью только при ударных нагрузках. При небольших ударных нагрузках в сочетании с абразивным изнашиванием либо при чистом абразивном изнашивании мартенситное превращение не протекает и износостойкость стали 110Г13Л невысокая.

Для изготовления лопастей гидротурбин и гидронасосов, судовых гребных винтов и других деталей, работающих в условиях изнашивания при кавитационной эрозии, применяют стали с нестабильным аустенитом 30Х10Г10,0Х14АГ12 и 0Х14Г12М, испытывающим при эксплуатации частичное мартенситное превращение.

Коррозийно-стойкие и жаростойкие стали и сплавы

Жаростойкие стали и сплавы. Повышение окалиностойкости достигается введением в сталь главным образом хрома, а также алюминия или кремния, т.е. Элементов, находящихся в твердом растворе и образующих в процессе нагрева защитные пленки оксидов (Cr, Fe) 2O3, (Al, Fe) 2O3.

Для изготовления различного рода высокотемпературных установок, деталей печей и газовых турбин применяют жаростойкие ферритные (12Х17,15Х25Т и др.) и аустенитные (20Х23Н13,12Х25Н16Г7АР, 36Х18Н25С2 и др.) стали,

обладающие жаропрочностью. Сталь 12Х17 -- sв=520МПа, s0.2=350МПа, d=30%, y=75%.

Коррозионно-стойкие стали устойчивы к электрохимической коррозии.

Стали 12Х13 и 20Х13 применяют для изготовления деталей с повышенной пластичностью, подвергающихся ударным нагрузкам (клапанов гидравлических прессов, предметов домашнего обихода) , а также изделий, испытывающих действие слабо агрессивных сред (атмосферных осадков, водных растворов солей органических кислот) .

Стали 30Х13 и 40Х13 используют для карбюраторных игл, пружин, хирургических инструментов и т.д.

Стали 15Х25Т и 15Х28 используют чаще без термической обработки для изготовления сварных деталей, работающих в более агрессивных средах и не подвергающихся действию ударных нагрузок, при температуре эксплуатации не ниже -20°С.

Подхожу к заключительной части урока, в которой подвожу итоги урока. Выделяю основные моменты темы, подчеркиваю необходимость зучения данной темы. Выдаю домашнее задание. Подвожу итоги урока. Выставляю оценки активным учащимся, для поощрения их потребности самообразования.

III . Заключительная часть: время 3 мин.

1. Подведение итогов

Еще раз выделяю наиболее важную информацию по теме "Классификация и основные свойства проводниковых материалов."

2. Задание на дом: стр. 94 ответить на вопросы, Задача № 3,4,6,8

3. Заключительное слово преподавателя: Прощаюсь с учениками.

Подобные документы

    Ознакомление с типами и дидактическими принципами лекционного занятия. Разработка календарно-тематического плана курса "Наноматериалы и нанотехнологии" для студентов учреждений среднего профессионального образования. Составление планов-конспектов занятий.

    курсовая работа , добавлен 25.09.2010

    Общая характеристика документов планирования в физическом воспитании школьников. Описание основных их разновидностей. Структура учебной программы. Содержание рабочего (тематического) плана. Сущность плана-конспекта урока. Составление расписания занятий.

    презентация , добавлен 11.02.2014

    Изучение краткого конспекта учебного материала по теме "Общие сведения о волокнах" предмета "Материаловедение". Логический, дидактический, психологический и методический анализ учебного материала. Составление структурной схемы, а также плана занятия.

    курсовая работа , добавлен 16.02.2015

    Методика обучения школьников машинной вышивке, необходимый для этого инструментарий и материалы. Анализ учебной прогораммы по теме и разработка перспективно-тематического плана. Составление плана-конспекта и сценария уроков труда по машинной вышивке.

    курсовая работа , добавлен 20.08.2009

    Основные принципы обучения, их система, характеристика и способы реализации. Анализ системы принципов дидактики, ее значение в ходе изучения темы "Денежно-кредитная система". Специфика разработки календарно-тематического плана и плана-конспекта урока.

    курсовая работа , добавлен 08.12.2009

    Ознакомление с рекомендациями по составлению разноуровневых заданий с целью контроля качества изучения иностранного языка. Рассмотрение алгоритма написания тематического плана типового урока. Организация самостоятельной и практической работы учащихся.

    учебное пособие , добавлен 15.04.2010

    Проблема организации контроля знаний учащихся и правильной оценки уровня их знаний. Виды контроля. Роль и значение тематического контроля, обеспечивающие эффективность учебного процесса, пути и методы проведения тематического контроля знаний учащихся.

    дипломная работа , добавлен 01.05.2008

    План-конспект урока - основной документ для проведения конкретного урока по теме, его структура. Рекомендации по составлению плана урока и его проведению. Образец плана-урока производственного обучения при изучении теме "Резка" для слесарей-ремонтников.

    методичка , добавлен 24.10.2012

    Разработка урока на тему "Введение в языки программирования" в соответствии с типовым учебным и календарно-тематическим планами обучения предмету "Языки программирования". Алгоритм проведения урока: проверка прошедшего материала, изложение новой темы.

    курсовая работа , добавлен 25.09.2010

    Материально-техническая база и схема руководства учебно-производственного комбината. Изучение календарно-тематического плана учителя технологии. Технологическая карта урока "Сверление отверстий в сплошном металле". План-конспект внеклассного мероприятия.

Физические свойства полупроводников Полупроводники́ материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками. Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры. Хорошо проводят электрический ток К ним относятся металлы, электролиты, плазма … Наиболее используемые проводники – Au, Ag, Cu, Al, Fe … Хорошо проводят электрический ток К ним относятся металлы, электролиты, плазма … Наиболее используемые проводники – Au, Ag, Cu, Al, Fe … Практически не проводят электрический ток К ним относятся пластмассы, резина, стекло, фарфор, сухое дерево, бумага … Практически не проводят электрический ток К ним относятся пластмассы, резина, стекло, фарфор, сухое дерево, бумага … Занимают по проводимости промежуточное положение между проводниками и диэлектриками Si, Ge, Se, In, As Занимают по проводимости промежуточное положение между проводниками и диэлектриками Si, Ge, Se, In, As




Физические свойства полупроводников R (Ом) t (0 C) R0R0 металл полупроводник Проводимость полупроводников зависит от температуры. В отличие от проводников, сопротивление которых возрастает с ростом температуры, сопротивление полупроводников при нагревании уменьшается. Вблизи абсолютного нуля полупроводники имеют свойства диэлектриков.


Электрический ток в полупроводниках Полупроводниками называют вещества, удельное сопротивление которых убывает с повышением температуры К полупроводникам относятся кремний, германий, селен и др. Связь между атомами – парно электронная, или ковалентная При низких температурах связи не разрываются




Собственная проводимость полупроводников При обычных условиях (невысоких температурах) в полупроводниках отсутствуют свободные заряженные частицы, поэтому полупроводник не проводит электрический ток. Si


«Дырка» При нагревании кинетическая энергия электронов увеличивается и самые быстрые из них покидают свою орбиту. Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. В этом месте образуется условный положительный заряд, называемый «дыркой». Si дырка + + свободный электрон


Примесная проводимость полупроводников Дозированное введение в чистый проводник примесей позволяет целенаправленно изменять его проводимость. Поэтому для увеличение проводимости в чистые полупроводники внедряют примеси, которые бывают донорные и акцепторные Примеси Акцепторные Донорные Полупроводники p-типа Полупроводники p-типа Полупроводники n-типа Полупроводники n-типа


Дырочные полупроводники (р-типа) In + Si Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.индия


Электронные полупроводники (n-типа) As Si Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.


Донорные примеси - это примеси, отдающие лишний валентный электрон Полупроводники с донорными примесями обладают электронной проводимостью и называются полупроводниками n–типа. Акцепторные примеси – это примеси, у которых не достает электронов для образования полной ковалентной связи с соседними атомами. Полупроводники с акцепторными примесями обладают дырочной проводимостью и называются полупроводниками p-типа.


Собственная проводимость полупроводников Валентный электрон соседнего атома, притягиваясь к дырке, может перескочить в нее (рекомбинировать). При этом на его прежнем месте образуется новая «дырка», которая затем может аналогично перемещаться по кристаллу.


Собственная проводимость полупроводников Если напряженность электрического поля в образце равна нулю, то движение освободившихся электронов и «дырок» происходит беспорядочно и поэтому не создаёт электрического тока. Под воздействием электрического поля электроны и дырки начинают упорядоченное (встречное) движение, образуя электрический ток. Проводимость при этих условиях называют собственной проводимостью полупроводников. При этом движение электронов создаёт электронную проводимость, а движение дырок – дырочную проводимость.


Диод Полупроводниковый диод полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода. Впервые диод изобрел Джон Флемминг в 1904 году.


Типы и применение диодов Диоды применяются в: преобразовании переменного тока в постоянный детектировании электрических сигналов защите разных устройств от неправильной полярности включения коммутации высокочастотных сигналов стабилизации тока и напряжения передачи и приеме сигналов Транзистор Электронный прибор из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. Обычно используется для усиления, генерирования и преобразования электрических сигналов. В 1947 году Уильям Шокли, Джон Бардин и Уолтер Браттейн в лабораториях Bell Labs впервые создали действующий биполярный транзистор.

Публикации по теме